Dynamics and Control of Nonlinear Variable Order Oscillators
نویسنده
چکیده
The denomination Fractional Order Calculus has been widely used to describe the mathematical analysis of differentiation and integration to an arbitrary non-integer order, including irrational and complex orders. First proposed around three hundred years ago, it has attracted much interest during the past three decades (Oldham & Spanier (1974), Miller & Ross (1993), Podlubni (1999)). The increased interest in fractional systems in the past few decades is due mainly to a large body of physical evidence describing fractional order behavior in diverse areas such as fluid mechanics, mechanical systems, rheology, electromagnetism, quantitative finances, electrochemistry, and biology. Fractional order modeling provides exceptional capabilities for analysing memory-intense and delay systems and it has been associated with the exact description of complex transport phenomena such as fractional history effects in the unsteady viscous motion of small particles in suspension (Coimbra et al. 2004, L’Esperance et al. 2005). Although fractional order dynamical and control systems were studied only marginally until a few decades ago, the recent development of effective mathematical methods of integration of non-integer order differential equations (Charef et al. (1992); Coimbra & Kobayashi (2002), Diethelm et al. (2002); Momany (2006), Diethelm et al. (2005)) has resulted in a number of control schemes and algorithms, many of which have shown better performance and disturbance rejection compared to other traditional integer-order controllers (Podlubni (1999); Hartly & Lorenzo (2002), Ladaci & Charef (2006), among others). Variable order (VO) systems constitute a generalization of fractional order representations to functional order. In VO systems the order of the derivative changes with respect to either the dependent or the independent variables (or both), or parametrically with respect to an external functional behavior (Samko & Ross, 1993). Compared to fractional order applications, VO systems have not received much attention, although the potential to characterize complex behavior by the functional order of differentiation or integration is clear. Variable order formulations have been utilized, among other applications, to describe the mechanics of an oscillating mass subjected to a variable viscoelasticity damper and a linear spring (Coimbra, 2003), to analyze elastoplastic indentation problems (Ingman & Suzdalnitsky (2004)), to interpolate the behavior of systems with multiple fractional terms (Soon et al., 2005), and to develop a statistical mechanics model that yields a macroscopic constitutive relation for a viscoelastic composite material undergoing compression at varying strain rates (Ramirez & Coimbra, 2007). Concerning the dynamics and control of VO
منابع مشابه
Solution of Nonlinear Hardening and Softening type Oscillators by Adomian’s Decomposition Method
A type of nonlinearity in vibrational engineering systems emerges when the restoring force is a nonlinear function of displacement. The derivative of this function is known as stiffness. If the stiffness increases by increasing the value of displacement from the equilibrium position, then the system is known as hardening type oscillator and if the stiffness decreases by increasing the value of ...
متن کاملA Modified Energy Balance Method to Obtain Higher-order Approximations to the Oscillators with Cubic and Harmonic Restoring Force
This article analyzes a strongly nonlinear oscillator with cubic and harmonic restoring force and proposes an efficient analytical technique based on the modified energy balance method (MEBM). The proposed method incorporates higher-order approximations. After applying the proposed MEBM, a set of complicated higher-order nonlinear algebraic equations are obtained. Higher-order nonlinear algebra...
متن کاملTargeted control of amplitude dynamics in coupled nonlinear oscillators.
We propose a general strategy for designing coupling functions in order to achieve a desired amplitude dynamics in coupled nonlinear oscillators. The target dynamics achieved by the proposed control schemes is a fixed-point motion at a desired amplitude level or a periodic motion at a desired frequency. The control schemes are illustrated with Rössler and Hindmarsh-Rose oscillators.
متن کاملModified homotopy perturbation method for solving non-linear oscillator's equations
In this paper a new form of the homptopy perturbation method is used for solving oscillator differential equation, which yields the Maclaurin series of the exact solution. Nonlinear vibration problems and differential equation oscillations have crucial importance in all areas of science and engineering. These equations equip a significant mathematical model for dynamical systems. The accuracy o...
متن کاملNonlinear Guidance Law with Finite Time Convergence Considering Control Loop Dynamics
In this paper a new nonlinear guidance law with finite time convergence is proposed. The second order integrated guidance and control loop is formulated considering a first order control loop dynamics. By transforming the state equations to the normal form, a finite time stabilizer feedback linearization technique is proposed to guarantee the finite time convergence of the system states to zero...
متن کاملAn Analytical Technique for Solving Nonlinear Oscillators of the Motion of a Rigid Rod Rocking Bock and Tapered Beams
In this paper, a new analytical approach has been presented for solving strongly nonlinear oscillator problems. Iteration perturbation method leads us to high accurate solution. Two different high nonlinear examples are also presented to show the application and accuracy of the presented method. The results are compared with analytical methods and with the numerical solution using Runge-Kutta m...
متن کامل